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The Markovian random walk of a point at the velocity of fight on a two-dimen- 
sional invariant space-time lattice is shown to yield the quantum statistic 
associated with the Klein-Gordon equation. Quantum mechanics thus appem~ 
as a particular case of Markovian processes in velocity space: and one justifies 
the introduction of Dirac's invariant "ether" as a possible physical stochastic 
subquantum level of matter which yields a realistic mechanical basis for recent 
attempts to reinterpret quantum mechanics in terms of material, causal, random 
behavior. 

1. I N T R O D U C T I O N  

Recent  discussions on the Einstein-Podolsky-Rosen paradox  (1935) 
have shown that qua n t um  mechanics  implies spacelike correlations be- 
tween two linear polarizers which measure the rate of coincidence between 
the relative orientations of pairs of photons  emitted in the S state. If  a 
for thcoming crucial experiment of Aspect  (1976) confirms this then the 
only  possible "causal"  (i.e., which preserves the fundamenta l  fact that  no  
individual particle can leave the light cone) way  out  of  the resulting 
contradict ion between relativity and  the quan tum theory of  measurement  
seems to lie in the direction of  an extension of the stochastic interpreta- 
tions of  quan tum mechanics  in terms of subquan tum r a n d o m  fluctuations 
resulting f rom the act ion of a stochastic "h idden"  invariant  thermostat .  
Indeed  these models  (a) deduce the form of the quan tum waves f rom the 
physical  assumption that  the stochastic jumps  occur  at the velocity of  
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light; (b) interpret the preceding superluminal interaction in terms of 
superluminal propagation of a "quantum potential" (Vigier, 1979) which is 
not carried by individual particles but results from phaselike collective 
motions carried by the said thermostat. 

The aim of the present paper is to analyze in a more precise way the 
physical and mathematical implications of these stochastic interpretations 
in the particular case of scalar particles. 

In Section 2 we shall briefly discuss the physical properties of the only 
possible invariant undetectable relativistic thermostat known in the litera- 
ture- i .e . ,  Dirac's "ether" model: a model that provides a realistic physical 
basis for the above-mentioned interpretations. 

In Section 3 we shall discuss the mathematical significance of the 
stochastic demonstrations already given in the literature starting among 
others with Bohm and Vigier (1954), Nelson (1966), de Broglie (1961), and 
the growing number of papers dealing with stochastic electrodynamics (De 
la Pefia and Cetto, 1975). 

2. THE SUBQUANTUM THERMOSTAT 

All these models imply of course a modem revival of the old "ether" 
idea: a concept apparently definitively destroyed by the negative result of 
Michelson's experiment. As one knows, however, Dirac (1951) has shown 
that it is not so and that one can construct at least one material covariant 
"ether" perfectly compatible with relativity. It rests on the idea that 
through any point 0 passes a flow of stochastic particles and antiparticles 
(described in Figure 1 as particles moving backwards in time) whose 
momenta have the extremities of their four-vectors P~' (with P~'P~, = m2c 2) 
distributed with a uniform surface density on the two three-dimensional 
surfaces of the hyperboloids H+ and H_.  They will thus remain invariant 
under all Lorentz transformations. 

This stochastic relativistic distribution constitutes the only possible 
model for a physical undetectable thermostat for spin-zero particles into 
which we can study the relativistic analog of the classical nonrelativistic 
Brownian motion. Dirac has derived this from the indeterminacy principle. 
However, it differs from it by two new physical properties. 

(a) Since the light cone behaves like an asymptotic accumulation 
manifold of Dirac's stochastic distribution we can assume that the corre- 
sponding stochastic jumps of a Brownian particle, submitted to its random 
action, occur practically at the velocity of light. Indeed, any given ex- 
changed energy is statistically superseded by more energetic interactions. 

(b) This ultrarelativistic Brownian motion includes the possibility of 
pair creation and/or  annihilation. This is important since the mixture of 
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particles and antiparticles has been shown to provide a realistic interpreta- 
tion (Terletski and Vigier, 1961) of possible, negative, probability distribu- 
tions. 

The concrete analysis of this particular covariant case of stochastic 
motion can be carried along the two lines of demonstration utilized in 
nonrelativistic stochastic theory. The first line is just a relativistic generali- 
zation of the ideas introduced by Einstein and Smoluchowski into 
Brownian motion theory. Assuming that our particles are (1) carried along 
the lines of flow or a regular drift motion v of extended particles associated 
with a collective motion on the top of Dirac's thermostat, (characters in 
boldface type) denoting four-vectors, (2)jump stochastically at the velocity 
of light from one average drift line of flow to another and thus (for an 
ensemble of identical particles with arbitrary initial positions) reach an 
average mean conserved distribution p(x); one can immediately demon- 
strate the stochastic force law first assumed by Nelson (1966), from which 
one deduces (Lehr and Park, 1977; Vigier, 1979; Guerra and Ruggiero, 
1978) a stochastic wave ~(x)=[p(x)]l/2exp[(iS(x)/h] with v=(1/m)VS, 
which satisfies the Klein-Gordon equation. 

This demonstration, however, being based on averages taken over 
four-dimensional volume elements, does not connect directly the underly- 
ing particle behavior with known statistical models discussed in the 
mathematical literature, such as Markovian processes. 
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The aim of the present work is thus to extend to the preceding 
relativistic case the second line of approach discussed in the nonrelativistic 
literature, i.e., to study the random walk of a moving point on a lattice 
discussed by Chandrasekhar (1943) in a famous paper and later extended 
from elliptical to hyperbolical equations by Avez (1976). This will be done 
in the next section. 

3. RANDOM WALK ON A COVARIANT LATTICE 

To simplify our demonstration we shall limit ourselves to the study of 
a two-dimensional space-time case x~ 1. Indeed, as will be shown later, 
its extension to four dimensions presents no conceptual difficulty. 

First one can check immediately that the points P.,. located at the 
intersection of the set of curves 

x~ ~-~2-,~, ~o>0, ~=~.o enS, n,m=O, _+ l, +2... 
(3.1) 

x l=(tanhOm)x ~ 00=0 , Om=m6, 6 > 0  

build an invariant discrete lattice (see Figure 2) in which the relativistic 
interval between Pn,m and each Pn__+l,m_*l is zero. The explicit expression 
for the P,,,, coordinates is 

x;,~ X;,.m' _-~sinhOm (3.2) 

The preceding lattice is clearly covariant since each point Pn,,,, stands at 
the intersection of three intrisically invariant lines (i.e., a spacelike hyper- 
bola and two isotropic light-cone-defining lines) which are transformed 
into themselves by any ortochronous Lorentz transformations. 

l 
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i 
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The (finite) coordinate d i f f e r e n c e s  At,sXO, m, At,sXln, m between the two 
points P,,,m and P,,+t,m+~, ( t = - 1 ; s = - +  1) connected by one stochastic 
jump will satisfy 

At, sXl ,  m = _s = -+ 1 (3.3) 

At, sXOn,m t 

In order to describe random walks on this lattice let us now define 
two sets of stochastic variables {el,e 2 . . . .  ~ . . .  }; (~1,~72 . . . .  ~k.--) with t j=  _+ 
1, ~ = _ 1 for every j ,  k. The sign of ~ 0/k) determines the fact that in the 
corresponding jump the velocity (the time orientation) has changed its 
s i g n ,  ~ = - 1 (71~ = - 1) or has remained unchanged ~ = _ 1 (~/k = -- 1) with 
respect to the preceding jump. 

One then checks immediately that the general expression for the 
displacement D~S(n,m), after N jumps from the initial point P~,m and a 
first jump in the direction defined by (t,s), can be written as the develop- 
ment 

s 0 0 
D ~ S (  n,  m) = 7 ( A t ' sXn 'm "~- ElAt'q"~rl'elXn + t,m +s 

+ ~l'~2At, q l,r/2,gr/lV/2ele2XO+ , ( l  + 'q l ) ,m + s ( l  +'qle,> "1" " " " ) (3.4) 

The probabilities for the realization of the signs of ej,~lk (with j =  k = 1) 
are given by Table I. 

The functions F ~ S ( n , m ) = ( f ( x J , , , , + D ~ ( n , m ) ) )  are the mean values 
of a function f (defined on the lattice) over all random walks of N jumps; 
they satisfy the following system of recurrence relations [one for each value 
of (t,s)]: 

F~S(n,m) = ( 1 -  A A _ t ,  s xO+t ,m+s  - B A _ t , _ s X ~  - C A t , _ s x O + t , m + s )  

X F~S__ l(n + t, m + s) + A A t,~x~ t,m+sF~t_'~(n + t, rn + s) 

+ BA_  t, --$xO+ t, ra + sFNt-'(-'( n + t, m + s) 

x o -- t , -s:  + t , m + s )  + C A t , - s  n+t,  r a + s l ' N - l [  n (3.5) 

TABLE I 

Probability ez "ql 

0 AA-t,,x;,+t,,,,+~ - 1 -- 1 
B o A-t , - ,x; ,+t , , , ,+s 1 - 1 

0 CAt,- ,x; j+t,m+s -- 1 1 
0 -- 0 0 1 A A  x + BA  x CA --t,a n t, ra+s --t,--s n+t, ra+$-- t,--sXn+t,m+a 1 1 
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At the limit for &--~0 (Heath, 1969; Kac, 1956) the lattice tends to 
recover all the interior of the light cone, the function F~S(n,m) goes into 
the function Ft'*(x~ and relations (3.5) can be shown to go into a 
system of four differential equations (t,s = _ 1), i.e., 

OF t's S OF t's 

Ox o t OX 1 
A ( F - , . , _  F t , , ) _  B ( F - t . - s  Ft,,) + C(F  t, - s .  Ft,,). 

(3.6) 

One then sees immediately that the function 

= (F l ' l+  F 1' - ' -  F - ' ' 1 -  F - " - ' )  + i ( F " ' -  F " - 1 +  f - l , l _  F -  1,1) 

(3.7) 

is a solution of the free Kle in-Gordon equation 

~ m,2  - - - f  - * = ~  (3.8) 

when one writes C = 2 A  + 4 B  and 2(A + B) 2= mZcZ/h z Q.E.D. (For details 
of deduction see the Appendix.) 

In the preceding demonstration f is not arbitrary since it is correlated, 
through relation (3.7) with an average scalar density p and a scalar phase S 
(see Vigier, 1979) by the relation ep=pl/2exp(iS/h). Indeed, one can 
demonstrate directly relation (3.8) with the help of a hydrodynamic picture 
which also yields Nelson's equation 

m(DcV - D,u) = F + (3.9) 

This suggests three physical remarks. 
(a) If one starts from a set of initial positions on a given hyperbola 

the function q~ now represents an average relativistic diffusion process 
comparable to a sound wave (i.e., a regular collective motion) propagating 
within Dirac's "ether"-like vacuum and carrying a particle along v. 

(b) Dirac's "ether," which creates stochastic jumps at the velocity of 
light, is apparently the only way to obtain such a covariant diffusion 
process. 

(c) It also explains an essential characteristic of the said process, viz., 
its reversibility. As one knows, nonrelativistic stochastic processes are 
fundamentally irreversible, being associated with a steady loss of informa- 
tion about where the particle comes from. This situation is modified here 



Klein-Gordon Statistic 813 

by the minus sign in (3.9), which has been shown (Vigier, 1979) to result 
from the particle-antiparticle mixture included both in Dirac's "ether" and 
in our random walk. Of course our time-reversing steps just describe 
particle-antiparticle transitions and they both move forward in time; but 
they are necessary to recover an essential feature (viz., reversibility) of 
quantum mechanics. 

4. GENERALIZATION AND CONCLUDING REMARKS 

In order to achieve a generalization of our two-dimensional derivation 
we must remark that the preceding demonstration remains unchanged if 
we analyze a Markov process on simpler (not covariant) lattices. For 
example we can reproduce all formulas for the displacements and their 
consequences if we consider the following lattice: 

XOm = nA~- ) AI 
X~.m=mAl ~--~r = 1, n,m=O,+__l,+_,'2 .. . .  (4.1) 

As a consequence the covariance of the formulation at each step of a 
limiting process cannot be considered as a necessary requirement. How- 
ever, the covariance of the result (Klein-Gordon equation) is obtained at 
the end of the process. This observation allows us to discuss formally the 
four-dimensional case as a straightforward generalization of lattices like 
(4.1), a procedure that evidently avoids all complications resulting from the 
construction of a four-dimensional covariant lattice. 

To conclude, we want to make two remarks on the relation of the 
preceding stochastic derivation to demonstrations utiliTed until now in the 
literature. 

(a) In opposition to the "classical" stochastic derivations of quantum 
statistics (Bohm and Vigier, 1954) it is not necessary here to consider a 
particle carried in a fluid wave described by the quantum mechanical 
equations. Indeed, our corpuscule is now just located in a sort of covariant 
"ether," not described a priori by a particular wave equation. A simple 
hypothesis on the stochastic behavior of the particle in this fluid is now 
sufficient to demonstrate directly the Klein-Gordon equation. 

(b) The model yields a physical insight into the observed difference 
between classical Brownian motion and quantum Brownian motion 
(De la Pena and Cetto, 1975). 

As one knows, in order to obtain the Schr6dinger equation (non_rela- 
tivistic limit of Klein-Gordon equation) or the classical equations of 
Brownian motions, we must choose "a priori" a different sign in the 
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dynamical equations obtained from Newton's law (Vigier, 1979). The 
present demonstration indicates that this choice has a physical basis: (1) in 
the existence of a Markov process at the velocity of light in velocity space, 
(2) in the simultaneous presence of particles and antiparticles (Feynman, 
1948) in the observed statistics of quantum theory. 
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APPENDIX 

In order to demonstrate in detail the transition from relation (3.5) to 
(3.8) we first remark that in the 8--->0 limit, the lattice tends to recover all 
the surface of the forward light cone and the number N of the jumps in our 
light velocity random walks becomes infinite: provided we keep fixed the 
space-time limits of the initial diffusion process. In this way the discrete 
function F~'(n,  m) becomes a continuous function depending on the initial 
point coordinates, namely Ft'~( x ~ x 1). 

Starting from (3.5) on the x ~ axis (m--0), if we subtract from both 
sides F~,'_ 1(n + t, 0) and then we divide by the time intervals, we have 

(n,0) A F t ,  s I AF]4~ S v - - * N - I  a A [ F - t ' ~ t n + t , s ) - F ~  s , ( n + t , s ) ]  
A X  0 -~ --  7 A X  1 (n+t'O) dl- N - I \  

X f i b  [ F f t ' l - s ( n  + t, s )  --  F ~ [  , ( n  + t, s) ] 

+ TC[ Ft,-~u_l(n+ t ,s)_F~_l(n+t,s)] t ,~ (A.1) 

where 

with 

a , ( x O ) . o  = 0 o _ . S e , ,  , ( - 1 )  

As(x')n+ t,o = (x')n+ ,.s -- ( xl)n+ ,,o ~ Ro e'aet8 sinh(s6) 

At,,(x~ -- (x~ + t, m +, -- (x~ = tXoe'% t(ms + I)8 si~_h 

mt,s(X 1)n,m = (X ' )n + t, m +s -- (X  1)n,m -~- shoe nSe t(,,~ + I)s sinh 8 

$ As(X1)n+t ,O S 

t At(x~ 8--,O t 
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AFt* (.,o) = F"* " + t , O ) - F ~ * ( n , O )  Of"* xl=o N -  1 ~, n ---) - -  (A.2) 
Ax o A,(x~ *-~o 0x ~ 

AF t'* [ F~* l(n+t,s)--F t's tn+t,O) OF t,* N--1 -- N-I\ 
m x  I ] (n+ t,O) ~ ~ ms(xl)n+t,O &->O OX 1 xlmO 

and a =  A-t '*(x~ -+ - 1 
~,(x~ 8-~o 

/~ = ~ - " - ' ( x ~  -~ - 1 

a,(xO)~,o ~-,o 

a , ,_ , (x~ 
---> 1; 

= A ( x O ) n , o  8-.o 

so that, in the 8--->0 limit, (A. 1) goes into (3.6) on the x ~ axis. From the four 
equations (A.1) we can now construct two complex equations: 

AqON]Ax 0 (n'O) = -- 19 Aq~N-~IAx ! (n+to)--[ ~A(fPN_l--iX~_l)+ ~B(fPN_l-- i~_l )  

- vC(XN-x-  q0N- 1) ] ](n+,.,) 

AXN I ~.. vAxN-I  [ 
A x  ~ ~.o) A x  ~ I{.+,,o) - [ a A ( x N - ' - i ~ T v - ' ) + f l B ( x N - ' - i x } - ' )  

- "tC(vN_ 1 -  Xt:_ 1) ] I(~ +,,,) (A.3) 

with cpN -- F~' 1 + i F ~  l, - 1 

a n d  Xa--- Fly' - z  + iFT l ,1 .  

Now, adding and subtracting (A.3) we obtain 

~X ~ (n,O) = - - t g ~  J(n+t,O)-- [ (~/l + ~g)('N-l-- i'~-l) ]](n+t,,) 

A~i~ .1~.o~ = - v A~N------~ 
Ax ~ Ax 1 L,,+ ~,o) 

- - [ ( a a + / 3 B + T C ) 6 _ , + ( a A - B B ) i ~ _ , ] ] ~ , + , , , )  (A.4) 

~N = ~PN + XN 

~N=CP~--X.N. 

with 

and 
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Then we take the difference between (A.4) and obtain respectively, 

AgO I(.+r,o)= - v ~  (.+t+r,o) - [ (aA + flB)(l~v-2-it~-2) ]l("+'+',s) 

~ = - v ~-----~' I 
AX 0 (n,s') AX 1 I(n+t,s') 

-- [(ffA "arj~a"~'yC)~N_l"~(~.a-Bn)i~,_l]l( , ,+, , ,+, ,)  (A.5) 

Finally we divide them respectively by A,,(x~ and Ar so we 
have 

A%~ A ~ , , _ ,  -- b ( a A  + B a )  - 
(Ax0) 2 (n,o)= - aVAx~ I (n+t,s) (n+t,s) 

AxOAxl cv (Axl) 2 (.+.o) 

where 

A2~N / A~N- I 

A2~N_ 1 = (  A~Su_ 1 

(AxI)  2 (n+,,O) \ AX1 [(n+t,s') 

+i(~ (n+t,s)] (A.6) 

A~ 
: ( x ~ 1 7 6  0x  '2 x , - o  Ax ~ (n,o) 

A~u_t 

AX 1 (n + t, O)ff 

mxOmx 1 

( and similarly for N-->N - l, N-->n + t). 
At,(x~ 

Moreover a =  ~ 1 
A,,(xO).,o 8~o 

b =  At'(x~ + 1 
At,(xO)n,O 8---~0 

AAxl).+,,o 
c =  ~ l  

As,(Xl)n,O ' 8--->0 

d--  A"(xl)n+"" , 1 
A,(Xl).,0 n-,o 

(A.7) 
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and the first derivative are defined as in (A.2). Now, in the limit &-+O, 
relation (A.6) becomes of course 

02~ x l 'O = 02~ X 1 + ( A + B ) (  0_~_~ _ i 0 ~ ' 1  
Ox ~ OxlOx ~ =o Ox ~ Ox ~ x'=O 

0_2~ = - - 0 2 ~  xt=o+[(A+B_C ~0~ +i(A_B) O~* ] xl_ 0 
OXIOx 0 xl-O OX 12 ) u~ OX 1 

(A.8) 

and subtracting them we obtain 

( 02~ 

Ox o~ 
O ~ - i  ~* \ 02~)x,=o=(A+B)(0x._.o ~xOJx,_O 0x ? 

0~* C ~ +i(A-B)--~-{..1] - [ ( A + B -  )-~Sx~ Ox Jl~,-o 
(A.9) 

In order to eliminate ~ from (A.9) we observe that, in the limit 8---)0, the 
first equation of (A.5) is 

so that we have 

( a2~ 
Ox o~ 

o~ = 
~ 7  0 XI .0  Ox'0~ x'=O + (A + B)(~-  i~*) (A.10) 

) = ( 2 A + 2 B -  )~xO xl=o--EiB0x ~ x'=O 
C O~ ~* 

OX 12 xl=O 

+ (A + B)(C-2B)(~- i~*)1.'=o (A.11) 

and requiring that 

C=2A +4B, 2(A + B) 2= m2c2 
h2 (A.13) 

Finally, subtracting from (A.11) the conjugate equation multiplied by i 

i ~2~, 02~. =(2A+2B-cpT.o -2B 
OX ~ ON 12 21~0 ON /1~  0 OX 0 

- (A + B ) ( C - 2 B ) ( ~ - i ~ * ) l x ' - O  (m.12) 
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we have 

3xO~ - ~  - ~ q~ - 0  (A.14) 
Xl~0 

which is the K l e i n - G o r d o n  equat ion  on the x ~ axis of  a Lorentz  frame. 
This evidently implies that  (A.14) is valid over  all space- t ime.  Indeed  

if a scalar equat ion such as (A.14) is valid at a point  in a given f rame it 
remains valid for  the same poin t  in all frames. Moreover ,  since our  lattice 
is covariant ,  if (A.14) is valid a long a given line x l = 0 ,  it is also valid on  
any  lattice point  of  another  of  our  lines (denoted x 1,= 0) which also plays 
the par t  of  our  x ~ axis in a different Lorentz  frame, because we can 
evidently repeat the preceding demons t ra t ion  in any  Lorentz  f rame along 
any axis x I = 0. 
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